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Two discretized stochastic models have been proposed in the paper of the counter-current flow 
of the dispersed and the continuous phase: A simulation model and a probabilistic model of the 
Markov's chain type. A comparison of both models has been made and their relation to the 
differential model of van de Vusse has been established. 

Counter-current flow of the dispersed and the continuous phase constitutes often an 
important part of the phenomena in the continuously operated contact apparatuses. 
Mutual motion of the phases takes place through the gravity or centrifugal forces. 
The principal phenomenon in these apparatuses is mass transfer eventually accom-
panied by chemical reactions. The rates of both mass transfer and chemical reactions 
are generally functions of time and position and it is thus apparent that the knowledge 
of the distribution of those quantities that affect the transfer rates will be of primary 
importance. These quantities are mainly concentration of the dispersed phase and 
in case of polydispersed systems also functions describing the particle size distribu-
tion and eventually also the distribution of their residence time within the apparatus. 
Because the flow in contactors is mostly turbulent the counter-current flow of both 
the continuous and the dispersed phase is being perturbed. The distribution 
functions thus become random functions and statistical characteristics enter the de-
scription of the process in question. 

It has been found experimentally1-4 that the hold-up of the dispersed phase in 
counter-current extraction columns is not constant along the height of the column. 
There may be several causes of this finding. Van de Vusse5 has shown that the hold-up 
of the dispersed phase may be expected to decrease steadily in the direction of its 
flow if there is a fluctuation velocity component superimposed on the falling velocity 
of a monodispersed system. According to the model proposed by Rod6, which com-
bines the effect of axial dispersion and the decrease of the falling velocity of droplets 
due to their gradual dispergation, profiles of the hold-up may exhibit maxima within 
the column as has been confirmed by experimental observation3. 
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This work is an initial study of the hydrodynamics of the counter-current flow 
of the dispersed and the continuous phase aimed at the general case when both axial 
mixing of the dispersion and splitting and coalescence of the droplets exist. The models 
to be proposed here were formulated for monodispersed systems but they are expected 
to find full use in application to polydispersed systems. Two stagewise models cor-
responding to the differential model due to van de Vusse5 have been proposed. The 
latter can be described as follows: Starting from an instant ( = 0 a steady flow of 
a monodispersion of density q is fed into a column. The dispersion moves through 
the column against the flow of the continuous phase while neither splitting nor coales-
cence of the droplets takes place. The dispersion moves in plug flow at the velocity v 
related to the wall of the column. Superimposed to this convective flow there is axial 
dispersion, characterized by the dispersion coefficient D relating to the gradient of 
particle concentration dn/dy. At the point y = L, where the continuous phase is fed, 
the velocity of the droplets increases to a value k. At y = L! the axial dispersion 
decays. The effect of particle concentration on the velocity of the convective flow 
as well as axial dispersion is neglected. This makes D, v and k constants. The per-
taining differential equations and boundary conditions read . 

Stochastic Model 

This model views the column of unit cross-section as consisting of perfectly mixed 
stages of height A I. At the instant t — 0 the first stage is fed by monodispersion 
at the rate q0 particles per time increment At. The continuous phase is fed into the 
N :- th stage. Backmixing of the dispersed phase occurs between individual stages as 
a random process. This process vanishes starting from the stage The spatial and 
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the time coordinate are discrete ( j ; = i A/; t} = j At; A/, At = const.; i = 0, 1, 2...). 
In view of the random character of axial dispersion both the local instantaneous 
concentrations of the droplets in the column (m i ; j/A/) and the density of the flow 
of the droplets at the exit of the column are random variables. 

The population balance of the z'-th stage may be formulated as follows 

m u = t 1 ~ (± + ^ u - i ) di ~ ~ / i ] m u - i + + 
+ +^1]m2tj_1 (8) 

mi,j = (1 - dx - r, - f l ) m W ] _ l + [(++ Si-u-0 + ir1 +/1]mi_1J_1 + 

+ [(i - V i j - i M + ir,] m^u-! ; 1 < / < N, (9) 

mNi,j = t1 - (i - SNi,j-i)di ~ d + K . j - J ^ - J f i - jr2 - f 2 ] + 

+ [ f t + + +/i] ^Nx-lJ-l + 

+ Ki - ^ni +1,j — i) d2 + }r2] m^ + u-i ; (70) 

Wi,j = (1 - - — /z) WfJ-l + [(i + + 

+ i r 2 +/2] mi-u-j + [(| - + + i n ] ™ i + i j - i ; N, < i <N2 

mN2J = [! - ( i - ^ N 2 , j - l ) ^2 - i r 2 - / 2 ] + 

+ [(i + + }r2 + f i ] mNj-i,j-i J 

= 0 — /2) 1 ; N2 < i ; (13) 

mito = 0 ; 1 rg z . (74) 

These balances contain three parameters d, r and / characterizing the rate of 
convective transport ( / ) and axial mixing (d, r) of the droplets. These parameters 
assume constant values over individual sections of the extractor. The parameter / 
represents the fractional number of the droplets in the z'-th stage transported by con-
vection into the i + 1-th stage per time t. In case of counter-current flow / is positive. 
The stochastic character of axial mixing shows in the appropriate coefficient of back-
mixing being composed of the constant (r/2) and the random (Sitid) component 
where <5;j is a random quantity with a uniform distribution H(0, 1/2), i.e. the proba-
bility density 

{ 1 for - 1 / 2 g <5 ^ 1/2 (15) 
n(S) = 

[0 
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The dependent variable m j (j is clearly also a random function of integer variables i j . 
The parameters d and r are non-negative and represent again the fractional number 
of droplets within the stage displaced during a single time increment. Owing the defi-
nitions of the parameters d, r a n d / as fractional amounts of dropleis in a given stage 
which emerge during a given time increment f rom the stage we must require that 

0<d+r+f^l. (16) 

In order that we may compare the stochastic with the deterministic model of van 
de Yusse we must implement certain modifications of Eqs (8) —(14): Firstly, we shall 
determine their expected values.This means that we replace the random variables by 
their expected values (means) and define new parameters 

nu = £(mi;j/A/) ; t> = ftAljAt ; k = f2 AljAt ; rx = (d1 + rJ /2/ i ; 

r2 = (d + r2)/2/2 ; q = q0lAt. 

(nJfj - n^^J/At = q/Al + [r1fi2ti-1 - (l + r,) wltj_j] v/At ; (17) 

("i,j ~ rh,}-i)lAt = K 1 + + > W i j - i - (1 + vlAl'> 
1 < i < N1 ; (18) 

( « N l f j ~ " N , , j ~ l ) l A t = K1 + " N t - l J - l f + + -

- ^ " N t j - i f - C1 + r 2 ) " N i j - i ^ / A / ; ( /9) 

- " i , j - i ) / A r = K 1 + + -

- ( 1 + 2 r 2 ) w 1 J _ 1 ] k / A / ; N, < i < N2 ; (20) 

(»N2J - «N 2 . j - I) /A* = [(1 + r 2 ) ( w ^ - u - i - «N2.j- .)] fc/A/ ; (2/) 

("i.i - " i . j - 1 )/Ar = ( « i - , f j - i - » i , j - i ) fe/A/ ; < i ; (22) 

«i>0 - 0 ; 1 ^ «• 

By arrangement of the above equations to a fo rm analogous to the differential wc 
finally obtain 

^ M z i = ( l + r > A / - 1 < / < /Vt ; (24) 
/ A A / 
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= d + f2) k At A - k ^ ^ ; W , < i < W 2 ; (25) 
Af (A/) A/ 

At AI K ' 

n i > 0 = 0 ; 1 ^ i ; (27) 

™i + i/2 - ( i + n ) v AI = q - Al ^hA^l ; / = 1 ; (28) 
A/ A? 

vn N i — 1/2 - ( i + ^l) U A/ 
An N i , N i — 1 _ 

A/ 

= knNl+l/2 - ( i + f 2 ) k A/ + A/ ; / = N, ; (29) 
A/ A? 

k n S l - 1 / 2 - ( t + r 2 ) k A l A f i N > - » > - 1 = 
AI 

A 
= /cnN2 j_ j + A/ — ^ ; i = N2 . (30) 

At 

In these equations 

A » j J - t = n i J - " i , j - i ; + l 

A " i + l , i - i i + 1 , j — 1 - W i - u - 0 / 2 ; 

A / J i . , - 1 - n t 
J - l ~~ " i - i j - i 5 

+ 1 ,£ = « i + 1 J - l - " i j - i ' 

" i + 1 / 2 = ( « i J - l + « i + u - i ) / 2 ; 

' ' i - 1 / 2 = ( " i i - l . j - 1 + « i j - i ) / 2 -

It is obvious that Eqs (24) —(30) transform in the limit At — 0, Al = 0 into Eqs 
(l) — (6). It must be noted that for a given intensity of axial mixing decreasing Al 
causes necessarily corresponding growth of r so as to keep the expression (1/2 + r) 
u Al constant (u corresponds to v or k). From the comparison we have the following 
equivalence 

D = (1/2 + rjv Al = (1/2 + r2) k A/ . (31) 
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The term 1/2 in these expressions accounts for the fact that even for r = 0 the system 
of ideal mixers of finite height A/ causes certain axial mixing. In the limit A/ -> 0, 
r oo the influence of the mentioned term clearly vanishes. 

From Eq. (31) and the definitions of the quantities appearing in it, it follows 

di + rx + A = d2 + r2 + f2 . (32) 

On defining the Peclet numbers for the differential model as 

Pex = v Al/D ; Pe2 = k A l /D (33) 

we have the following equivalences 

= i + rt ; — = 1 + r2 . (34) 
Pe! Pe2 

A similar expression has been derived by Miyauchi and Vermeulen7 for steady 
state extraction with axial mixing. The characteristic length A/ in Eqs (31) and (3J) 
may be thought of as the construction height of a stage of a stagewise extractor and 
the equivalence then pertains the application of the differential or stagewise model 
to the stagewise extractor. It is worth noting that in the balance of the first stage, 
Eq. (25), which is an analog of the boundary condition (5) of the differential model, 
an accumulation term appears due to the finite dimensions of the examined volume 
element. 

The analogy of both models may thus be summarized in the following equations 

y -> i Al; n -> £(m/A/) ; k f2 Al/At ; t -»• j At ; v -> ^ AljAt 

1 -* 4O/a ' • 

(35) 

Because the simulation model contains one more parameter than the differential 
model it is desirable to introduce one more relation between the parameters. A plau-
sible alternative is 

dil'i = d1\r1 . (36) 

As the next step we determine the number of independent parameters of the sto-
chastic model. For this purpose it is convenient to rewrite Eqs (24) —(30) into the 
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dimensionless form. Introducing a dimensionless concentration 

v = n/n0 ; n0 = q/o = 4o/(/ i A/) ; (37) 

T^'j.j-i = (i + ^i) A2vi + i , i - i - Avj + ^ i - ! ; 1 < i < Nt ; (38) 
f 1 

~ Avj(j_., = ( + + f 2 ) " ^ A 2 v i + 1 , i _ 1 A v i + 1 ) i _ t ; N, < i < N2 ; (59) 
J I J i ./i 

7 " A J , J - I = A V I . I - I ; N 2 < i ; (40) 
J i J i 

vf,o = 0 ; 1 g I ; (4i) 

- A V J . J - I - ( | + R , ) A V 2 1 + 1 - v 1 + 1 / 2 ; i = 1 ; ( 4 2 ) 

./1 

A v j , j - 1 = - ( i + »"l) AvN l ; N l_! + v N x _ J / 2 + 
J I 

+ (1 + r 2 ) £ AvNi +1 lNl - £ vNl + , / 2 ; i = N{ ; (43) 
J1 /2 

7 Avj, = - ( i + f 2 ) £ A v ^ . ! + ff vN z_ 1 / 2 - £ vNa ; i = JV2 . (44) 
J i JI /i 

As independent parameters we may thus choose e.g. / l 5 / 2 / / l 5 djr, d + r + f , Ny, 
N'N,. 

Probabilistic Model 

The difference equations for the expected values (means) of the previous model may be 
assigned their probabilistic meanings. Let us term the appearance of a droplet in the 
i-th stage of the apparatus by its state X = i and define the family of the states (i = 
= 1, 2, ..., N + 1). The state of the droplet is a function of time which is defined 
as a discrete variable ( j = 1, 2, . . . ) ; the sequence of these states in time constitutes 
the examined process. The probability that a droplet appears in time j in the state X 
is designated as x( j). Further, pik is the probability of the transition of the droplet 
from state i into state k over a single time increment (k = 1, 2, . . . , N + 1). With 
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respect to Eqs (17) — (23) the process in question is one of Markov. This means that 
the state at a time j depends only on the state at the time j — 1 and not on the earlier 
states. Because the independent variables are discrete we are dealing with the so called 
Markov's chain8 . 

The principal assumptions of the stochastic model are following: Al) The motion 
of an individual droplet is independent of the motion of the rest of the particles. 
A2) The mechanisms giving rise to individual types of droplet 's displacements are 
independent. AS) Transitions during a single time increment occur only between 
neighbouring states. A4) The probability of a transition is independent of time. 

F rom the assumptions A1—A3 it follows that the flow of droplets through the 
apparatus can be depicted as a superimposed motion of individual droplets or groups 
of droplets entering the equipment at the same time increment. Further , the probabi-
lity of the resulting displacement of a droplet in a given direction equals the sum of 
the probabilities of partial displacements in this direction induced by individual 
transport mechanisms. 

As follows f rom Eqs (17) —(22) the probabilities of the transition may be arranged 
into a tridiagonal square transition matrix whose rows represent the original state 
of the droplet and the columns the state in which the droplet with the given probability 
enters during the time increment. In accord with the assumption A4 the matrix is 
stationary. 

In order that the described Markov ' s process be fully analogous to the averaged 
stochastic process described previously we shall introduce conditions enabling indi-
vidual probabilities of the transition to be determined: 

CI : The droplets enter only the first stage and leave only f rom the N-th stage. The 
droplets that have left the system do not reenter. 

C2: In the section between the first and the th stage the probability of the transition 
forward is \_(dl + r t ) / 2 ] + jx and back + r ^ / 2 . In the section between + 1 
and N2 these probabilities are [(d2 + r 2 ) /2] + f2 and (d2 + r2)j2. In the section 
between N2 + 1 and N there can be only forward transitions with the probability f2. 
According to CI the transition matrix has the rank of N + 1 (the droplet leaving the 
stage N enters the auxiliary "absorpt ion stage" N + 1 to remain there). Transit ion 
matrices possessing this property are called irreducible. 

Let us designate the transition matrix by 

The diagonal elements (i = k) of the matrix represent the probability that the droplet 
remains during the time increment in the original state. Thus we have 

P = { p i k } ; i , k = 1, . . . , N + 1 . (45) 

J > i k = 1 ; k= 1, .. ., N + 1 
k 
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According to CI and C2 we may write 

Pi,i-1 = (d1 + ' i ) /2 ; 

Pi,i+l = [(*: + rt)l2] + / i ; 

Pi. i = 1 - (di + rt + / , ) ; 

Pi,k = 0 ; k 4= i — 1, i, i + 1 ; 

Pi,i-1 = (d2 + ; 
Pi,i+1 = [(d2 + r2)/2] + f 2 

Pi,i = 1 - (d2 + r2 + f 2 ) ; 

Pi,k - 0 ; k i — 1, i, i + 1 ; 

for 1 < i ^ Nt 

for Nl < i ^ N2 

Pi,i+ 1 ~ f2 I 

Pw> = i - f i ; 

p. k = o ; k * i, i + 1 ; 

• for N? < i < N 

Pi,2 = [ K + rt)l2] + A ; 

Pi. i = 1 - I K + r t ) /2] - A ; 

Pi,k = 0 ; fc * 1, 2 ; 

p n „ n i - i = + r i ) l 2 ; 

•PNi.NI +1 = 

PNi,Ni = 1 - [(<*! + n ) / 2 ] - [(d2 + r2)/2] - / 2 ; 

i>N,i = 0 ; k + 1,JV„JV, + 1 ; 

pn j .n j - I = ( d i + r i ) ' f l ; 

PN2 ,N2 + 1 = J2 ; 

Pn2,n2 = 1 - [(d2 + r2)/2] - f2 ; 

PN2,k = 0 ; k + N 2 - l , N 2 , N 2 + I ; 

(47) 

(50) 

(52) 

PN + I,N + I — 1 • 

The initial distribution of the particles in the system is given by the column vector as 

P(°) = {P(°)i} J i = h . . , N + l , (54) 
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where p0i is the probability that the entering particle assumes the state i. 
Thus 

K°)i = 1 ' 
p(0), = 0 ; i * 1 . (55) 

In accord with the theory of Markov's chains the probability of the existence of 
a droplet in individual states after j time increments from the instant of its entry into 
the system is given by the relation 

P(j)r = f>(0)TPj , (56) 

where 

p { j ) = { p { j ) i } ; i = 1 , N + 1 ( 5 7 ) 

is the column vector of the probability that the droplet exists in state / at the time j 
from its appearance in the system. 

As has been mentioned the resulting probabilities of the appearance of a droplet 
in individual states in a given time instant of the process may be obtained by super-
position of the probabilities valid for particles entering the system in individual time 
increments from the beginning of the process. In analogy to the simulation model 
we shall introduce the condition 

C3: Starting from t — 0, q0 identical droplets enter the system during each time 
increment. For the resulting vector of probabilites we then have 

P i = £ P ( J ) ; j = 0 , 1 , n , j 

= K ° ) T L p j > ( 5 8 ) 
j 

The vector of distribution of the probability density in individual states is then 

< T = M A } = M o p ( 0 ) r I P j ; j = 0 , 1 , . . n . ( 5 9 ) 
j 

DISCUSSION 

While assigning a definite numerical value to all remaining parameters of the simula-
tion model and their combinations poses no problem the meaning of the sum d + r + 
+ / calls for clarification. This sum represents the fractions of the whole content of 
a single stage transported during a single time increment At. Unlike the length in-
crement A I, whose value corresponds in case of a stage wise extractor to the height 
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of a construction stage, the time increment is adjustable. The ratio / A//A* though 
determines the rate of convective transport and its value is thus set by the conditions 
of the simulated process. Similarly, the value (d + r) AljAt determines the rate of 
axial mixing. From here we have that the sum d + r + f is directly proportional 
to At. Clearly, the value of the sum should be taken sufficiently small in order to 
sufficiently closely represent the real continuous process by the discrete model. 

If we deal with a differential contactor then also the length AI is adjustable and the 
value of the sum d + r + f will be indirectly proportional to the scale of velocity 
AljAt. However, it must be considered that Al appears also in the Peclet number 
(Eq. (33)) and its choice also affects the magnitude of r. 

The choice of the time increment affects also the magnitude of q0 as may be appa-
rent f rom the last of the relations (35). q0 is thus proportional to d + r + f . 

In view of what has been said above the choice of the time scale may affect also 
the properties of the random signal 3d. With the decreasing time scale At the maximum 
amplitude of the signal diminishes and the characteristic frequency AljAt grows. 
This is true provided the changes of the random signal occur with the frequency 
\jAt. This limitation can be removed by introducing another parameter, T, repre-
senting the ratio of the time increment of the generator of the random signal and the 
time scale 

T = AtsjAt . (60) 

The parameter T thus affects the width of the band within which the autocorrelation 
function of the random signal 3d has a nonzero value9. 

As has been shown the simulation model expressed in terms of the expected values 
and the probability model are difference analogs of the differential model of van de 
Vusse. The advantage of the difference models rests in the ease of their solution 
both numerically and analytically as will be shown in the second part of this work. 
Another advantage of the difference models is that the time and spatial variation of 
the parameters can be more readily assessed. Moreover, if the real system is a stage-
wise, the stagewise models allow their parameters to be assigned values associated 
with the physical nature of the process. 

The stochastic simulation model, in addition, enables the random character of the 
true process to be expressed and the appropriate parameters d and x represent sui-
table variables characterizing the source of random disturbance. It is apparent that 
the random character may exhibit not only axial mixing but also the other parameters 
such as e.g. the feed rates of the phases into the system etc. While fluctuation of these 
parameters can be in principle reduced by proper design and control elements the 
source of the scatter due to axial mixing is connected with the random nature of the 
flow within the system which cannot be effectively influenced by external means. 
At the same time the random character of the flow, beside the deterministic circula-
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tion flows, is the source of the ultimate effect of axial mixing. In the calculations 
the random quantity <5 j i s simulated by the generator of random numbers. The 
generator proposed here is one with a uniform distribution (15). Of course, other 
types of distribution may be chosen satisfying the model in order to examine the effect 
of the distribution of the random signal on the concentration distribution of the 
dispersion as a random response. 

One of the advantages of the probabilistic model of the type of Markov's chain is 
that it enables the analytical solutions to be obtained easily (59) for the transient 
state. The theory of the Markov's systems permits also study of e.g. the rate of ap-
proach to the steady state by means of the properties of the transient matrix as will 
be shown in the second part of this work. As far as the relation between the stochastic 
and the probabilistic model presented above is concerned it is apparent that on aver-
aging the fluctuation component in the first model (Eq. (17) —(23)) both models 
differ only formally in terminology and the Markov's model represents the averaged 
simulation model written in matrix notation. Let it be noted that both models enable 
easy generalization to more complex mechanisms of longitudinal mixing by e.g. remov-
ing the assumption A3 and admitting transport over more than a single stage. 

LIST OF SYMBOLS 

d fract ion of droplets within a stage t ransported by r a n d o m component of axial mixing 
D coefficient of axial dispersion L 2 T _ 1 

% ) = X expected (mean) value of variable X 
/ fract ion of droplets within a stage t ransported by convective flow 
H(c, h) uniform distribution with the mean c and half-width of interval h 
i sequence number of stage 
j sequence number of t ime increment 
k convective velocity in the second and the third section, L T - 1 

Al length increment, height of stage, L 
L length of a column section, L 
m number of droplets in a stage 
n number of droplets in a unit volume, L ~ 3 

N sequence number of end section of column 

Pik probabil i ty of droplet 's transit ion f rom state i into k 
7^(0); probabil i ty that a droplet enters initially state / 
/>(j)j probabil i ty that a droplet appears after j steps in state i 
P(0) column vector of probabilities of initial states of droplets 
P( j) column vector of probabilit ies of states of droplets af ter j steps 

Pn column vector of state probabilities of droplets entering the process anytime f rom 
the onset 

P transit ion matrix 
<7 density of flow of droplets at inlet, L - 2 T - 1 

Qo number of droplets per unit area of column cross section entering during a single time 
increment, L ~ 2 

<7(j)i f requency of droplets in state i af ter j steps 
9 vector of frequencies of droplets in individual states af ter completion of the process 
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r fraction of droplets in a single stage transported by nonrandom component of back flow 
r = (d + r)j2f coefficient of backmixing 
t time, T 
At time increment of simulation model, T 
A/s time increment of generator of random signal, T 
v convective velocity in the first section, L T - 1 

X state of droplet 
y coordinate of length, L 
Pe Peclet number 
8 random variable defined by (12) 
v dimensionless concentration of droplets defined by Eq. (28) 
n probability density of random variable 

r dimensionless time increment of generator of random signal defined by Eq. (33) 

Subscripts 

i sequence number of stage containing the examined particle 
j number of time steps 
k sequence number of stage entered by examined particle 
1 first section of column 
2 second section of column 
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